Spatial Sensitivities of the Antarctic Ice Sheet to Environmental Changes (The SeaRISE Project).

Sophie Nowicki¹, Robert A. Bindschadler¹, Ayako Abe-Ouchi², Andy Aschwanden³, Ed Bueler³, Hyeungu Choi⁴, Jim Fastook⁵, Glen Granzow⁶, Ralf Greve⁷, Gail Gutowski⁸, Ute Herzfeld⁹, Charles Jackson⁸, Jesse Johnson⁶, Constantine Khroulev³, Eric Larour¹⁰, Anders Levermann¹¹, William H. Lipscomb¹², Maria A. Martin¹¹, Mathieu Morlighem¹³, Byron R. Parizek¹⁴, David Pollard¹⁵, Stephen F. Price¹², Diandong Ren¹⁶, Eric Rignot¹⁰,¹³, Fuyuki Saito¹⁷, Tatsuru Sato⁷, Hakime Seddik⁷, Helene Seroussi¹⁰, Kunio Takahashi¹⁷, Ryan Walker¹⁵, and Wei Li Wang¹

1: Code 615, NASA Goddard Space Flight Center, Greenbelt MD 20771 USA
2: Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan;
3: Geophysical Institute, University of Alaska, Fairbanks, AK, USA
4: Sigma Space Corporation, Lanham, MD 20706 USA
5: Computer Science/Quaternary Institute, University of Maine, Orono, ME 04469 USA
6: College of Arts and Sciences, The University of Montana, Missoula, MT. 59812 USA
7: Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
8: Institute for Geophysics, The University of Texas at Austin, Austin, TX 78758-4445 USA
9: Department of Electrical, Computer and Energy Engineering and Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309-0449 USA
10: Jet Propulsion Laboratory - California Institute of Technology, 4800 Oak Grove Drive MS 300-331, Pasadena, CA 91109-8099, USA
11: Potsdam Institute for Climate Research, 14473 Potsdam, Germany
12: Los Alamos National Laboratory, Los Alamos, NM 87545 USA
13: Department of Earth System Science, University of California, Irvine, Irvine, CA 92697-3100, USA
14: Mathematics and Geoscience, Penn State DuBois, College Place, DuBois, PA 15801 USA
15: Earth and Environmental Systems Institute, Pennsylvania State University, University Park PA 16802 USA
16: Department of Physics, Curtin University of Technology, Perth, Australia 1985
17: Japan Agency for Marine-Earth Science and Technology, Research Institute for Global Change, 3173-25 Showamachi, Kanazawa, Yokohama, Kanagawa 236-0001, Japan
Abstract.

Atmospheric, oceanic, and subglacial forcing scenarios from the Sea-level Response to Ice Sheet Evolution (SeaRISE) project are applied to six three-dimensional thermomechanical ice-sheet models to assess Antarctic ice sheet sensitivity over a 500-year timescale and to inform future modeling and field studies. Results indicate: i) growth with warming, except within low-latitude basins (where inland thickening is outpaced by marginal thinning); ii) mass loss with enhanced sliding (with basins dominated by high driving stresses affected more than basins with low-surface-slope streaming ice); and iii) mass loss with enhanced ice-shelf melting (with changes in West Antarctica dominating the signal due to its marine setting and extensive ice shelves; cf. minimal impact in the Terre Adelie, George V, Oates, and Victoria Land region of East Antarctica). Ice loss due to dynamic changes associated with enhanced sliding and/or sub-shelf melting exceed the gain due to increased precipitation. Furthermore, differences in results between and within basins as well as the controlling impact of sub-shelf melting on ice dynamics highlight the need for improved understanding of basal conditions, grounding-zone processes, ocean-ice interactions, and the numerical representation of all three.

For more information on the paper, please contact Sophie Nowicki: sophie.nowicki@nasa.gov