Difference between revisions of "Blatter-Pattyn Boundary Conditions"

From Interactive System for Ice sheet Simulation
Jump to: navigation, search
Line 1: Line 1:
 
Boundary conditions + masking, one sided differences, basal BC (no-slip, viscous, and plastic behavior all through Beta^2 implementation)  
 
Boundary conditions + masking, one sided differences, basal BC (no-slip, viscous, and plastic behavior all through Beta^2 implementation)  
 +
 +
NEED: sfc and basal BC description from HO model descrip. doc
  
 
TO DO: add links from previous pages discussing BP equations and BP numerical solution
 
TO DO: add links from previous pages discussing BP equations and BP numerical solution
  
  
Sliding over a plastic bed ...
+
 
 +
== Sliding over a plastic bed ==
  
 
<math>\begin{align}
 
<math>\begin{align}
Line 13: Line 16:
 
\end{align}</math>
 
\end{align}</math>
  
Add some figures here showing the results for simple ice stream setup ...
+
 
 +
 
 +
figures here showing the results for simple ice stream setup ...
 +
 
 +
 
  
 
[[Image:plastic_bed1.jpg]]
 
[[Image:plastic_bed1.jpg]]
 +
 +
  
 
[[Image:plastic_bed2.jpg]]
 
[[Image:plastic_bed2.jpg]]

Revision as of 22:41, 30 July 2009

Boundary conditions + masking, one sided differences, basal BC (no-slip, viscous, and plastic behavior all through Beta^2 implementation)

NEED: sfc and basal BC description from HO model descrip. doc

TO DO: add links from previous pages discussing BP equations and BP numerical solution


Sliding over a plastic bed

\begin{align}
  & x:\quad \left[ 2\tau _{xx}\left( b \right)+\tau _{yy}\left( b \right) \right]\frac{\partial b}{\partial x}+\tau _{xy}\left( b \right)\frac{\partial b}{\partial y}-\tau _{xz}\left( b \right)=-\tau _{bx} \\ 
 & \quad \quad \quad \quad \quad \quad \quad \quad \quad \tau _{bx}\approx \tau _{0} \\ 
 & x:\quad \quad \quad \quad \quad \quad \quad ...\quad \quad \quad \quad =-\tau _{0}\left( \frac{u}{\left| \mathbf{u} \right|} \right) \\ 
 & x:\quad \quad \quad \quad \quad \quad \quad ...\quad \quad \quad \quad =-\tau _{0}\left( \frac{u}{\sqrt{u_{0}^{2}+v_{0}^{2}+\gamma }} \right) \\ 
\end{align}


figures here showing the results for simple ice stream setup ...


Plastic bed1.jpg


Plastic bed2.jpg