# Difference between revisions of "Solution of the Blatter-Pattyn model"

(→Coordinate Transform) |
|||

Line 14: | Line 14: | ||

<math>\sigma = \frac{(s - z)}{H}</math> | <math>\sigma = \frac{(s - z)}{H}</math> | ||

− | This means that at the surface of the ice sheet <math>\sigma = 0</math>, and at the base <math>\sigma = 1</math> regardless of the ice thickness | + | This means that at the surface of the ice sheet <big><math>\sigma = 0</math></big>, and at the base <big><math>\sigma = 1</math></big> regardless of the ice thickness. As a result of this transformation, a coordinate <big><math>(x,y,z)</math></big> is mapped to <big><math>(x',y',\sigma)</math></big>. This means that function derivatives must be re-written (using <math>\frac{\partial f}{\partial x}</math> as an example) as: |

<math> | <math> |

## Revision as of 12:24, 14 March 2011

## Contents |

### Governing Equations

The final form of the equations we'd like to solve is:

### Coordinate Transform

For ice sheet modeling, it is convenient to recast the governing equations using a dimensionless, stretched vertical coordinate (often called a *sigma coordinates*). The stretched vertical coordinate is defined as:

This means that at the surface of the ice sheet , and at the base regardless of the ice thickness. As a result of this transformation, a coordinate is mapped to . This means that function derivatives must be re-written (using as an example) as:

Similarly for and . Pattyn simplifies this by assuming that

and

.

This assumption is valid if the bed and surface gradients are not too large (Pattyn 2003). This simplifies the above to:

Rescaling parameters , , , , and are defined. Presenting the x derivative case, as the y derivative case is analogous,

Using these, expressions for the x derivatives become:

where hatted values refer to the coordinate directions in sigma coordinates. Similarly, the first cross-stress term on the RHS is given by

One term has become five terms and each one of those is pretty scary looking on its own. Luckily, there is also a lot of symmetry here. Notice that if we wanted to design subroutines to discretize the terms on the RHS, we could re-use a lot of them by either applying them to the correct velocity component (either to the *u* OR the *v* discretization) or by passing the appropriate arguments (pass either the grid spacing in the *x* direction OR the *y* direction, where appropriate). There is still a lot of work here ...

### Operating Splitting

Again, note that for the *x* equation we've moved all the terms containing gradients in *v* to the right-hand side (RHS).

We've set it up this way in order to solve the equations using an **operator splitting** approach; for the *x* equation, we treat *v* as known (where we take the values of *v* from the previous iteration) and solve for *u*, and vice versa when we solve they *y* equation for *v*. The "splitting" refers to the fact that we are breaking the multi-dimensional divergence operation into multiple steps. Rather than solving one big matrix equation for *u* and *v* simultaneously we solve two smaller matrix equations in sequence with one of the unknowns treated as a known "source" term.

### General Matrix Form

A general matrix form of the equations, where coefficients on the *u* and *v* velocity components (i.e. viscosity, grid spacing, scalars) are contained in the block matrices **A**, is given by

where the **uu** subscript denotes block matrices containing coefficients for gradients on *u* in the equation for the *x* component of velocity (i.e. *u*). The subscript **uv** denotes block matrices containing coefficients for gradients on *v* in the equation for the *x* component of velocity (and similarly for the **vv** and **vu** subscripts). On the right-hand side, the subscripts denote the geometric source terms for the *x* and *y* components of velocity (subscripts *u* and *v*, respectively).

### Solution of the Non-linear System Through a Fixed Point Iteration

The non-linearity in the equations - the fact that the coefficients on the velocity components (the viscosity) are dependent on the velocity (or more specifically, the velocity gradients) - is handled through a fixed-point iteration.

Go to Strang for this ..

### Final Matrix Form

The final matrix form of the equations, accounting for the Picard iteration on the viscosity, is given by

where the index *k* denotes an unknown value being solved for during the current non-linear iteration and the index *k*-1 denotes a lagged value taken from solution at the end of the previous non-linear iteration.

### Solution of the Linear System

### Newton-based Methods for Solutions of the Non-linear System

Go to Blatter-Pattyn model.

Go to Blatter-Pattyn Boundary Conditions.