# Difference between revisions of "Solving the equation for thickness evolution"

(→Conservation of mass for an ice sheet) |
(→Conservation of mass for an ice sheet) |
||

Line 24: | Line 24: | ||

− | where <math>{\vec{U}}</math> is the depth-averaged velocity vector (in map plane), and ''U'' and ''V'' are the depth integrated ''x'' and ''y'' velocity fields, ''H'' is the ice thickness, and <math>{\dot{b}}</math> is the source term, which is the surface mass balance (>0 for accumulation and <0 for ablation). Note that, as above, a negative sign in front of the divergence insures sensible behavior | + | where <math>{\vec{U}}</math> is the depth-averaged velocity vector (in map plane), and ''U'' and ''V'' are the depth integrated ''x'' and ''y'' velocity fields, ''H'' is the ice thickness, and <math>{\dot{b}}</math> is the source term, which is the surface mass balance (>0 for accumulation and <0 for ablation). Note that, as above, a negative sign in front of the divergence insures sensible behavior. Consider a section of the ice sheet where the thickness is nearly constant and there is no accumulation or ablation. If the velocity gradient along-flow is negative (the ice is slowing down), we expect that to lead to thickening locally (left-hand side of the equation > 0) and vice versa (if the ice is speeding up along flow, that should lead to thinning locally). |

## Revision as of 10:42, 5 August 2009

## A generic conservation equation

Evolution of the ice sheet geometry is simply the result of mass conservation. Consider a generic conservation equation for some scalar value *φ*

On the left-hand side we have the change in *φ* per unit time, which is given by the negative of the divergence of the flux, *Q* (a vector), plus any contribution from sources, . The negative sign in front of the divergence operator (the ) insures that, for example in the case of heat flow, a negative temperature gradient causes an *increase* in temperature over time in the absence of source. Intuitively, we expect heat to flow from warmer to colder regions rather than vice versa. This is, perhaps, more obvious if we expand the equation above in terms of partial derivatives and the vector-valued flux components,

.

## Conservation of mass for an ice sheet

For an ice sheet (or any depth-integrated mass flow for that matter), the equation becomes

where is the depth-averaged velocity vector (in map plane), and *U* and *V* are the depth integrated *x* and *y* velocity fields, *H* is the ice thickness, and is the source term, which is the surface mass balance (>0 for accumulation and <0 for ablation). Note that, as above, a negative sign in front of the divergence insures sensible behavior. Consider a section of the ice sheet where the thickness is nearly constant and there is no accumulation or ablation. If the velocity gradient along-flow is negative (the ice is slowing down), we expect that to lead to thickening locally (left-hand side of the equation > 0) and vice versa (if the ice is speeding up along flow, that should lead to thinning locally).